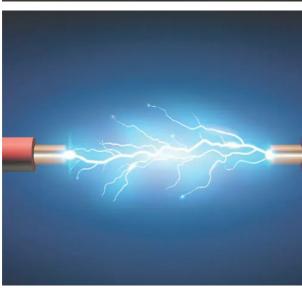


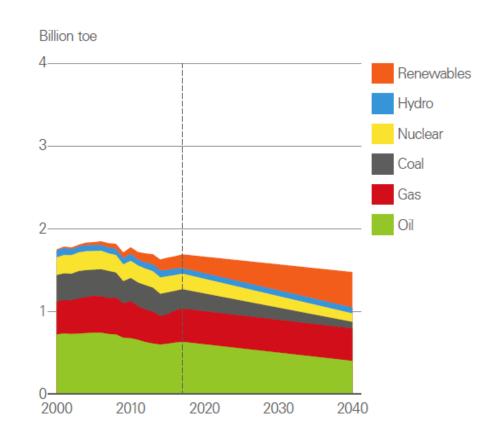
DOPPLER

G R U P P E

UPDATE ENERGIEPOLITIK, ZUKUNFT WASSERSTOFF **AM STANDORT ÖSTERREICH**


ENERGIEPOLITISCHES UPDATE

- Öl
- Gas
- Strom
- Wasserstoff


EIN ZUKUNFTSBILD

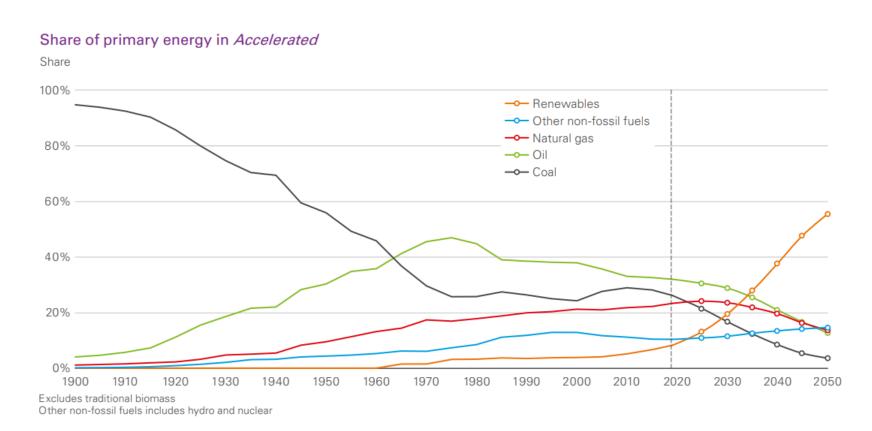
PROGNOSTIZIERTER ENERGIEBEDARF IN DER EU, STAND 2019

Primary energy consumption by region and fuel: EU

Ressourcen:

- 80 % fossil
- 20 % nichtfossil

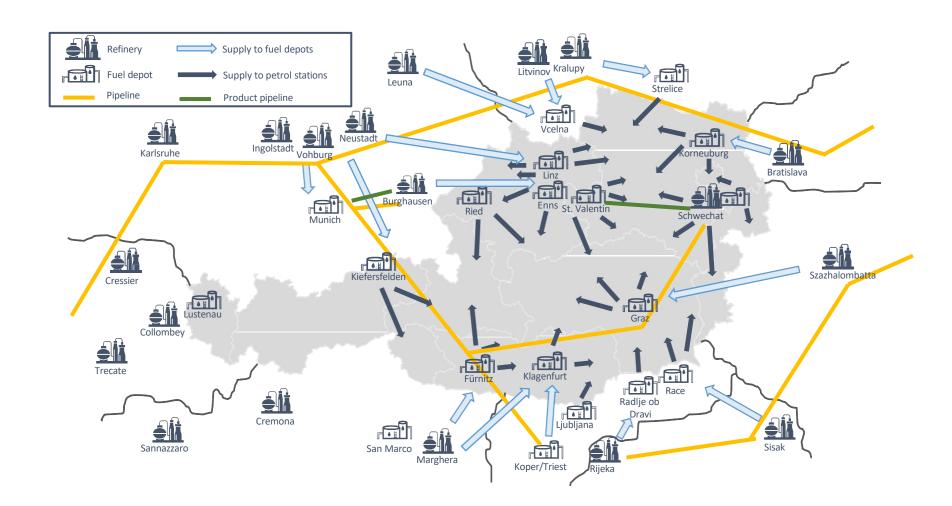
Quelle: BP Energy Outlook 2019 edition


EIN ZUKUNFTSBILD

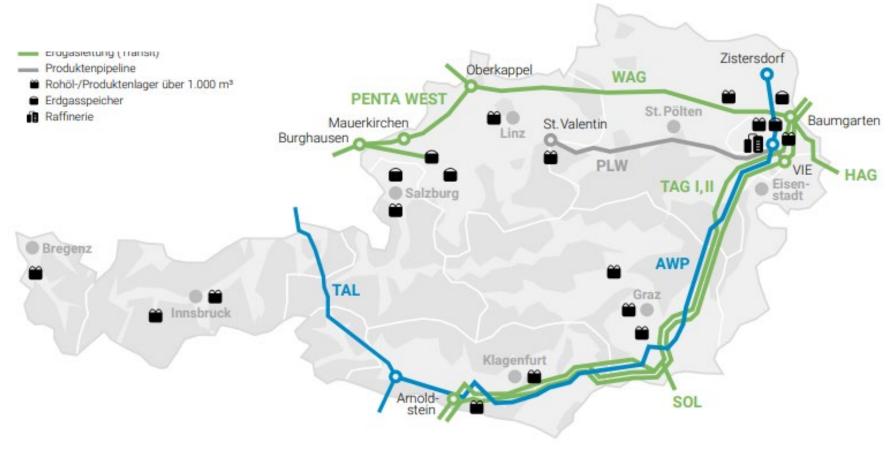
PROGNOSTIZIERTER ENERGIEBEDARF IN DER EU, STAND 2022

Changing nature of global energy markets: more diverse energy mix, increased competition and greater customer choice

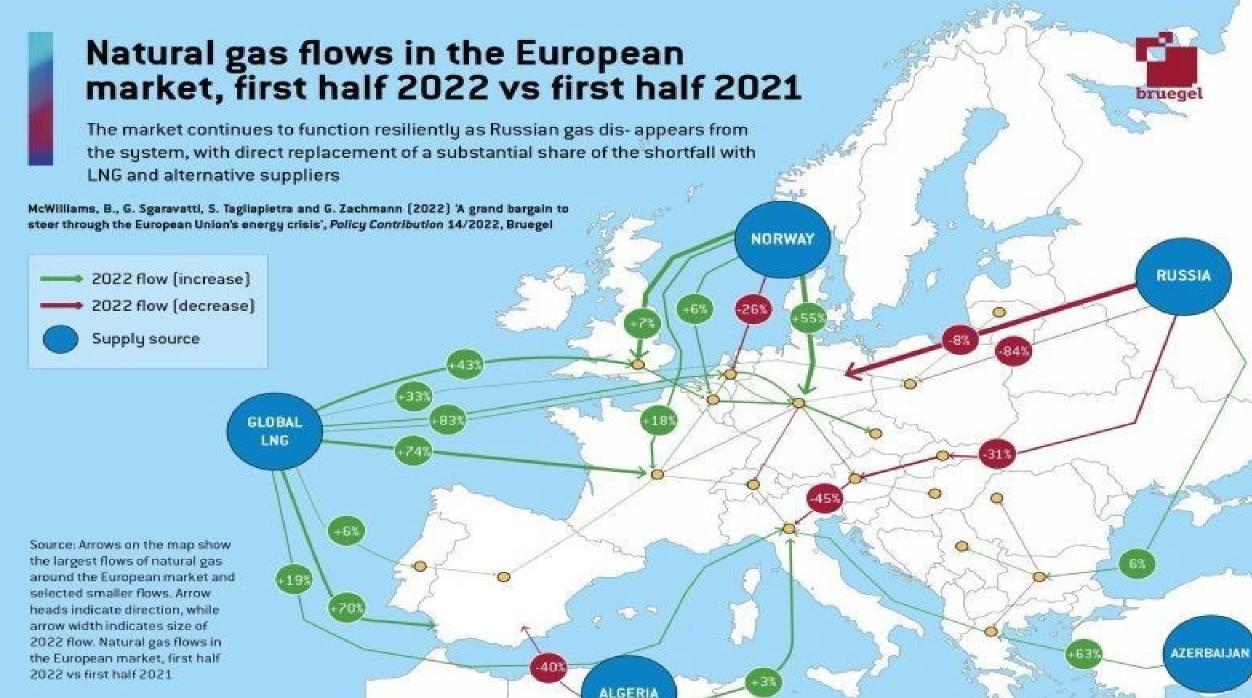
Ressourcen:


- 80 % fossil
- 20 % nichtfossil

Quelle: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2022.pdf



RAFFINERIEVERSORUNG ÖSTERREICHS



ERDÖL- & ERDGAS-FERNLEITUNGEN IN UND DURCH ÖSTERREICH

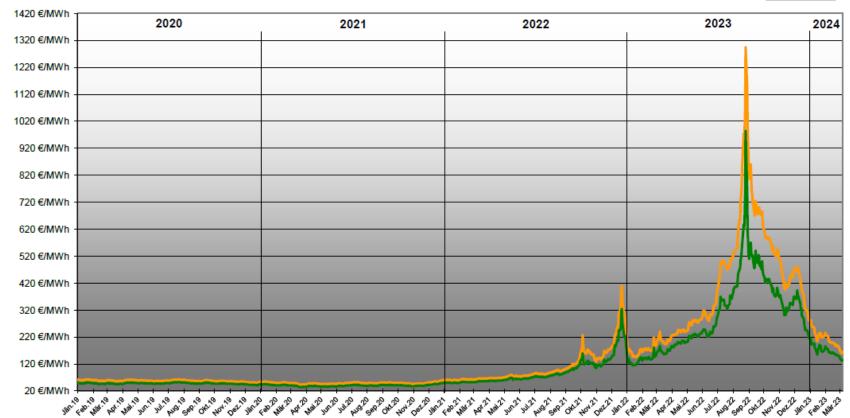
Quelle: https://www.wko.at/branchen/industrie/mineraloelindustrie/branchenreport-mineraloelindustrie-2021.pdf

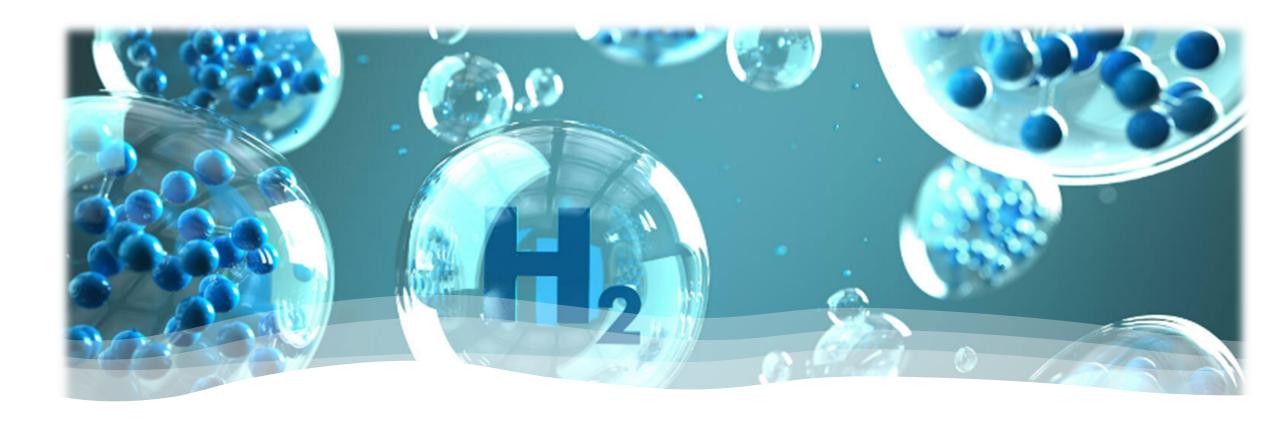
MARKTSITUATION STROM IN ÖSTERREICH & EU | I

- Die Stromversorgung im Winter 2022/23 war in Europa unkritisch sein.
 (milder Winter)
- In Frankreich sind zahlreiche KKWs nicht in Betrieb (ca. 17 GW!).
- Frankreich plant großflächige Abschaltungen und benötigt massive
 Stromimporte aus Deutschland. (Trockenheit Maintenance AKW's)
- Deutschland hat nur 3 KKWs in Reservebetrieb -> Experten meinen zu wenig, um die Stromversorgung bei allen Worst-Case-Szenarien zu gewährleisten.

MARKTSITUATION STROM IN ÖSTERREICH & EU | II

- Die wieder in Betrieb genommenen Kohlekraftwerke in Deutschland haben teilweise zu wenig Kohlevorräte für einen längeren und kalten Winter.Sollte kommenden Winter erledigt sein.
- Die Strompreise sind heisses politisches Eisen Angabefehler ??




EEX – ONE YEAR AHEAD NOTIERUNGEN SEIT 01/2019

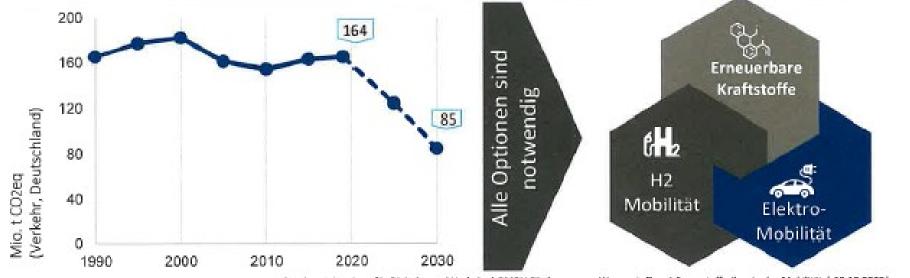
EEX-German-Power-Peak-Year-Future-Settlement-Preis

EEX-German-Power-Base-Year-Future-Settlement-Preis

WASSERSTOFFSTRATEGIE

Bundes-Klimaschutzgesetz

CO2-Ausstoß im Verkehr bis 2030 halbieren


Konzept für klimafreundliche Nutzfahrzeuge

Ziel

Bis 2030 soll etwa ein Drittel der Fahrleistung elektrisch oder auf Basis von strombasierten Kraftstoffen erbracht werden (Klimaschutzprogramm 2030).

Auswirkungen

Zentraler Masterplan des BMDV mit Strategie zur Umsetzung von Klimaschutzmaßnahmen im Straßengüterverkehr bis 2030.

VERFÜGBARKEIT WASSERSTOFF

grüner H₂

- <u>Elektrolyse</u> von Wasser mit Strom aus erneuerbare Energie
- Ohne Erzeugung von CO₂

- Lieferung von "größeren" Mengen aktuell nur aus Deutschland mgl. (Linde, Tyczka)
- OMV nimmt 2023 10 MW Elektrolyseur in AUT in Betrieb (1.500 t/Jahr)
- derzeit ca. 11 € pro kg*

grauer H₂

- <u>Dampfreformierung</u> von fossilen Brennstoffen
- CO₂ wird ungenutzt in die Atmosphäre abgegeben
- 1 Tonne H₂ --> 10 Tonne CO₂

- z.B. Linde, OMV, Tyczka
- OMV H₂ Tankstellen in AUT werden mit grauem Wasserstoff versorgt. Kosten pro kg H₂ ab Zapfsäule 9 € inkl. in AUT und 9,5€ ink. in DE
- derzeit ca. 7 € exkl. pro kg*

blauer H₂

- Äquivalent zu grauem
 Wasserstoff mit Unterschied,
 dass CO₂ gespeichert wird.
- Bilanziell CO₂ neutral

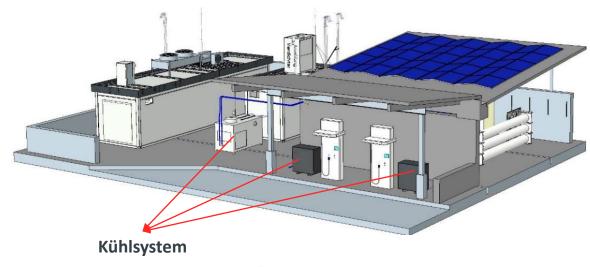
- CCS für Speicherung (Carbon Capture and Storage-Technik (CSS))
- Langzeitfolgen der Speicherung mittels CSS sind allerdings unklar

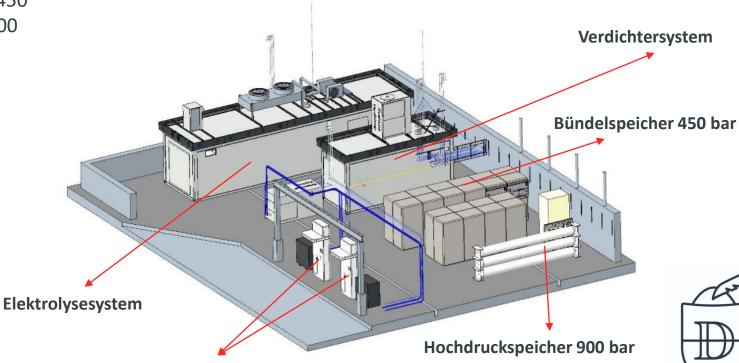
- Erzeugung durch
 <u>Methanpyrolyse</u> (thermische
 Spaltung von Methan CH₄)
- Kohlenstoff wird in fester Form gebildet

- Emissionen fraglich (Methan als hoch reaktives THG)
- Hoher Energiebedarf
- Begrenzte
 Verwertungsmöglichkeiten
 von festem CO₂

^{*} Preis bis Anlieferung an Tankstelle exkl. Zusatzkosten für Aufbereitung bis Dispenser.

WASSERSTOFF IM VERKEHRSWESEN


- Die H2 Tankstelle
 - Überblick der Technik
 - Überblick Infrastruktur Österreich
 - Gegenüberstellung Diesel-/H2-LKW
- Erfahrungen mit Alternativen Antriebstechnologien
 - Anforderungen an den Fuhrpark
 - Aktuelle Grenzen Wasserstoff-LKW
 - Chancen
 - Herausforderungen



H₂-TANKSTELLE Überblick Technik

- Bedarfsorientiertes Scaling der Anlage (ab 0,3 MW)
- Lokale Erzeugung von H₂ mittels PEM Elektrolyseur
 + Füllsystem für externe Anlieferung
- Gasförmige Speicherung in Mitteldruckspeicher (450 bar Bündelform) und/oder Hochdruckspeicher (900 bar)
- LKW und Bus 350 bar Systemdruck Dispenser
 PKW 700 bar Systemdruck Dispenser
- Flächenbedarf max. 300m² (LKW-Ausführung mit 450kg/Tag und 1MW Anschlussleistung)
- Restwärmeverwertung möglich.
- H₂ Qualität 5.0 (Reinheit ≥ 99,999%)

H₂-TANKSTELLE

Überblick Technik

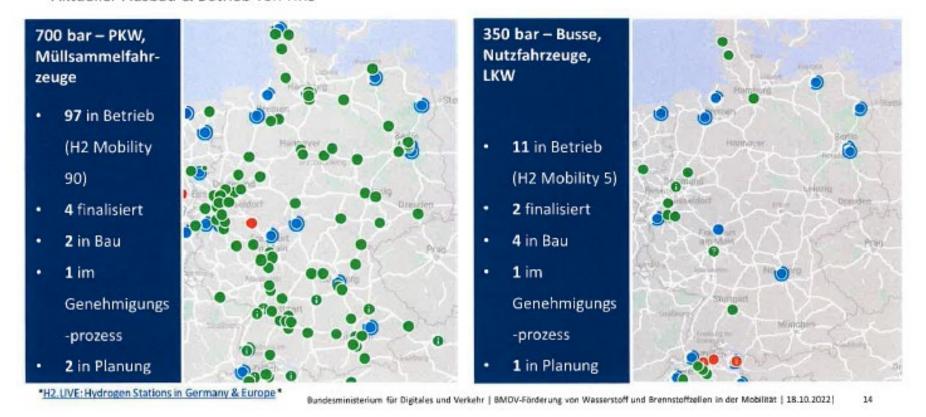
CGH2 350

CGH2 700

350 bar

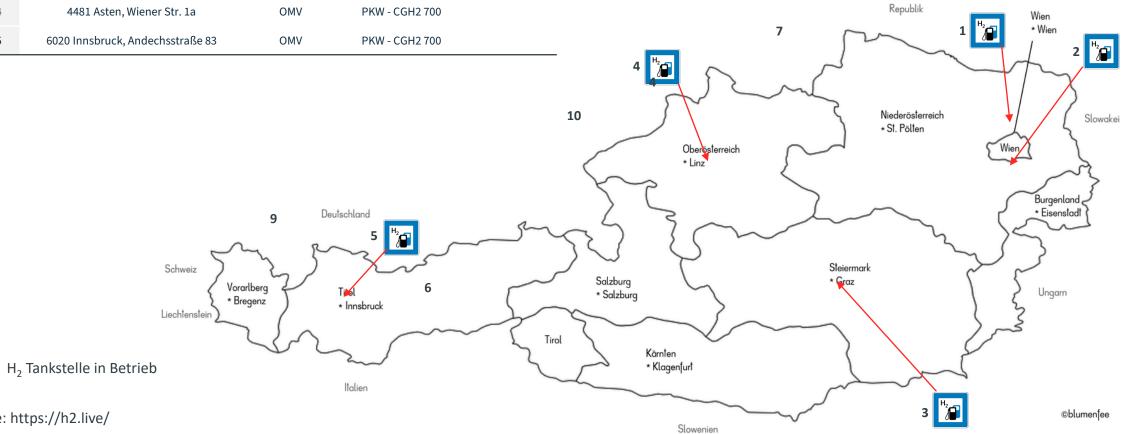
700 bar

- Kostengünstigere technische Peripherie (Speicherung, Kompression, Kühlung, etc.)
- Geringe Relevanz von Volumen und Masse des Fahrzeugtanks bezogen auf Fahrzeugmasse und Fahrzeuggröße
- Ca. <u>33 kg Fassungsvermöge</u> Fahrzeugtank
- Ca. <u>8-12 Minuten Dauer Betankungsvorgang</u> (Referenzfahrzeug Hyundai XCIENT)

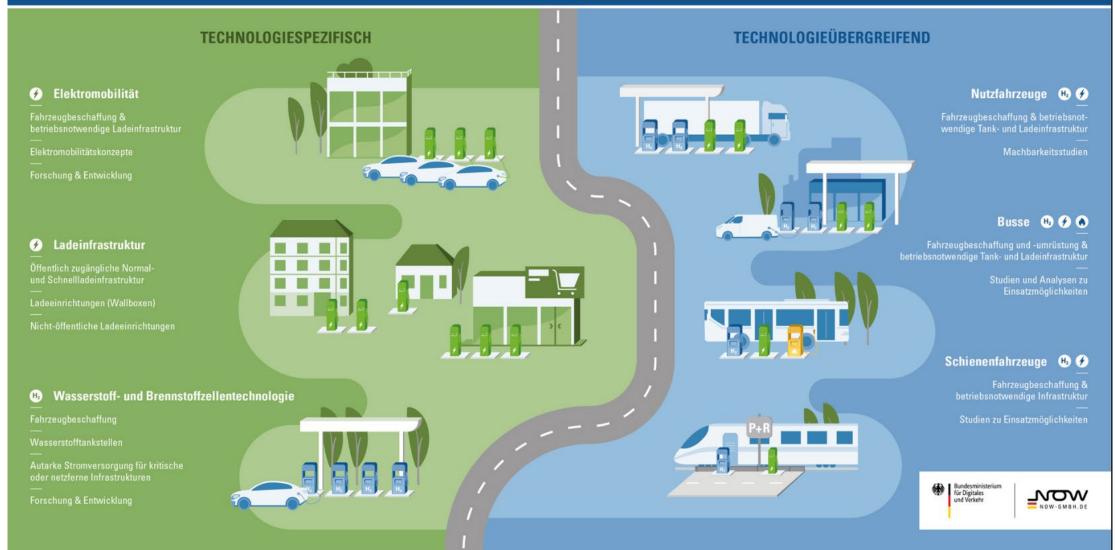

- Kostenintensivere technische Peripherie (Speicherung, Kompression, Kühlung, etc.)
- hohe Relevanz von Volumen und Masse des Fahrzeugtanks bezogen auf Fahrzeugmasse und Fahrzeuggröße
- Ca. 5 kg Fassungsvermöge Fahrzeugtank
- Ca. <u>3-5 Minuten Dauer Betankungsvorgang</u>

Wasserstoff-Tankstellen Infrastruktur

Aktueller Ausbau & Betrieb von HRS


8

Tschechische


H₂-TANKSTELLE Überblick Infrastruktur Österreich

Quelle: https://h2.live/

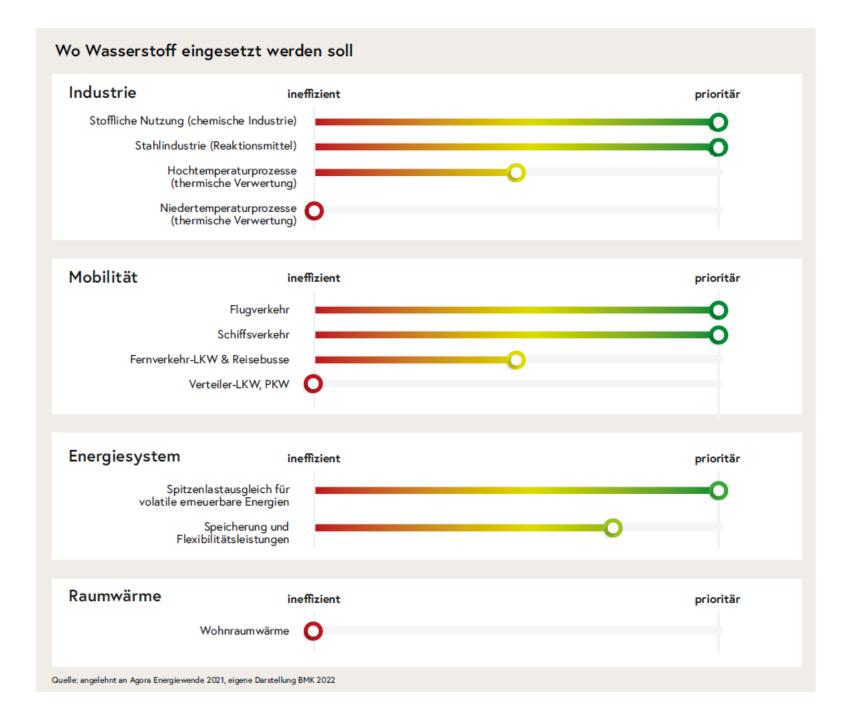
Nr.	Standort	Betreiber	Art	Status	
1	1210 Wien, Shuttleworthstraße 10	OMV	PKW - CGH2 700		
2	2351 Wiener Neudorf, IZ NÖ-Süd Str. 4	OMV	PKW - CGH2 700	In Betrieb -	
3	8041 Graz, Ostbahnstraße 10	OMV	PKW - CGH2 700	<u>öffentlich,</u> grauer H₂	
4	4481 Asten, Wiener Str. 1a	OMV	PKW - CGH2 700	0 2	
5	6020 Innsbruck, Andechsstraße 83	OMV	PKW - CGH2 700		

吴 BMDV-FÖRDERLANDSCHAFT NACHHALTIGE MOBILITÄT

H₂-TANKSTELLE

Gegenüberstellung Diesel-/H2-LKW

Annahme	Wert	Anmerkung
Verbrauch H ₂ -LKW	7,7 kg H ₂ / 100km	á 8,85 € / kg
Verbrauch Diesel LKW	30 L Diesel / 100km	á 1,2 € / L
MAUT Differenz Diesel/H ₂	0,3 € / km	gemäß ASFINAG
CO ₂ Besteuerung pro t	30 € / t	
Fahrprofil	70 % Autobahn	
Laufleistung pro Jahr	100.000 km	
Nutzungsdauer	10 Jahre	
Wartungskosten Differenz	0€	


OPEX Diesel LKW			
Kosten	Wert	Anmerkung	
Treibstoff	36.000€	30 L / 100km · 1,2 € / L · 100.000 km	
Maut	21.000€	0,3 € / km · 100.000 km · 80%	
OPEX	57.000€	pro Jahr bzw. 100.000 km	

OPEX H ₂ LKW			
Kosten	Wert	Anmerkung	
Treibstoff	68.145€	7,7 kg H ₂ / 100km · 8,85 € / kg · 100.000 km	
Einsparung CO2 Besteuerung	- 6.000€		,
OPEX	62.145€	pro Jahr bzw. 100.000 km	

Anschaffung Diesel LKW zu H ₂ LKW			
Kosten	Wert	Anmerkung	
Diesel			
Anschaffung	ca. 95.000 €		
Summe	ca. 95.000€		
H ₂			
Anschaffung	550.000€	Richtwert	
Förderung Mehrkosten	- 364.000 €	80%	
Summe	186.000€		

Differenz OPEX stark abhängig von CO2 Steuer und MAUT. Unterschied aktuell vertretbar.

ANFORDERUNGEN AN DEN FUHRPARK

- Fahrzeuge müssen stabil und kosteneffizient laufen
- Unterschiedliche Fahrzeugtypen je nach Anforderung
- Ausreichende Nutzlast, Reichweite und Tankinfrastruktur
- Kurze Betankungszeit
- Wirtschaftlichkeit
- Geringer CO2-Ausstoß
- Im Fern- und Systemverkehr ist Wasserstoff derzeit die einzig sinnvolle Alternative zu Diesel

AKTUELLE GRENZEN WASSERSTOFF-LKW

- H2-Lkw als Verteillösung Nahverkehr bei Distanzen < 400 km möglich
- Keine flächendeckende Tankinfrastruktur außerhalb der Schweiz vorhanden
- Gegenwärtig nur 1 Anbieter mit Serienfahrzeug (Hyundai) und dies "nur" als 19 to Motorwagen mit Fixaufbau
- Durch Fixaufbau kein Einsatz in Stückgutsystemverkehren (WAB)
 möglich
- H2-Preis aktuell bei 10€/kg, damit Treibstoff 3x höher als Diesel
- Preis eines H2-Lkw aktuell bei T€ 450-600, Diesel T€ 95
- First mover Investitionen in unsicherem (regulatorischem) Umfeld

CHANCEN

- Vermeidung CO2-Steuern
- Image/Marketing
- Transportbranche in sichtbarer Vorreiterrolle
- Zugang zu Innenstadtzonen
- Im Bereich bis 7,5 to ausreichend E-Lkw am Markt
- Entwicklungssprünge bei OEM's beschleunigen Entwicklung
 - -z.B. Hyundai als Treiber für Europäische OEM
- Lerneffekte durch geändertes Dispoverhalten
- Kundenbindung aufgrund
 - -klarer nachhaltiger Positionierung
 - -Verbesserung der CO2-Bilanz
- Mitarbeiterbindung

HERAUSFORDERUNGEN

- OEM's müssen großteils erst Serienproduktion starten
- Reichweiten für E-Lkw > 800 km notwendig
- Ausbau der Infrastruktur (Ladesäulen, Tankstellen)
- Ausbau von Servicenetzen
- Staatliche F\u00f6rderungen (z.B. in DE 80\u00b6 der Mehrkosten)
- Mautregelung (z.B. in CH Entfall der LSVA)
- Total costs of ownership Parität zu Diesel muss erreicht werden (solange Betriebskosten so hoch sind, Anschaffung nicht attraktiv)
- Verfügbarkeit grüner Wasserstoff
- Für Wasserstoff branchenübergreifende gemeinsame Lösung notwendig
- Wettbewerb um nachhaltig erzeugte elektrische Energie

VIELEN DANK FÜR IHRE **AUFMERKSAMKEIT**

